cross-encoder/ms-marco-MiniLM-L-6-v2
cross-encoder
Clasificación de texto
Este modelo fue entrenado en la tarea de clasificación de pasajes de MS Marco. El modelo puede ser usado para Recuperación de Información: Dada una consulta, codifica la consulta con todos los pasajes posibles (por ejemplo, recuperados con ElasticSearch). Luego, ordena los pasajes en orden descendente. Consulta SBERT.net Retrieve & Re-rank para más detalles. El código de entrenamiento está disponible aquí: SBERT.net Training MS Marco
Como usar
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained('model_name')
tokenizer = AutoTokenizer.from_pretrained('model_name')
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors='pt')
model.eval()
with torch.no_grad():
scores = model(**features).logits
print(scores)
from sentence_transformers import CrossEncoder
model = CrossEncoder('model_name', max_length=512)
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2'), ('Query', 'Paragraph3')])
Funcionalidades
- Clasificación de Texto
- Transformadores
- PyTorch
- JAX
- bert
- Puntos de Inferencia
Casos de uso
- Recuperación de Información
- Clasificación de Pasajes
- Reranqueo de Resultados de Búsqueda