E5-base-sin-supervisión

intfloat
Similitud de oraciones

Este modelo es similar al e5-base, pero sin ajuste supervisado. Genera incrustaciones de texto mediante preentrenamiento contrastivo débilmente supervisado. Utiliza una arquitectura con 12 capas y un tamaño de incrustación de 768. Los autores del modelo son Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder y Furu Wei. Este modelo solo funciona con textos en inglés y los textos largos serán truncados a un máximo de 512 tokens.

Como usar

Debajo hay un ejemplo para codificar consultas y pasajes del conjunto de datos de ranking de pasajes MS-MARCO.

import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel

def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
    return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]

# Cada texto de entrada debe comenzar con "query: " o "passage: ".
# Para tareas que no sean de recuperación, puedes simplemente usar el prefijo "query: ".
input_texts = [
    'query: how much protein should a female eat',
    'query: summit define',
    "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
    "passage: Definition of summit for English Language Learners. : 1  the highest point of a mountain : the top of a mountain. : 2  the highest level. : 3  a meeting or series of meetings between the leaders of two or more governments."
]

tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-base-unsupervised')
model = AutoModel.from_pretrained('intfloat/e5-base-unsupervised')

# Tokenizar los textos de entrada
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')

outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])

# normalizar las incrustaciones
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())

Soporte para Sentence Transformers

from sentence_transformers import SentenceTransformer
model = SentenceTransformer('intfloat/e5-base-unsupervised')
input_texts = [
   'query: how much protein should a female eat',
   'query: summit define',
   "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
   "passage: Definition of summit for English Language Learners. : 1  the highest point of a mountain : the top of a mountain. : 2  the highest level. : 3  a meeting or series of meetings between the leaders of two or more governments."
]
embeddings = model.encode(input_texts, normalize_embeddings=True)

Requisitos del paquete

pip install sentence_transformers~=2.2.2

Funcionalidades

12 capas
Tamaño de incrustación de 768
Preentrenamiento contrastivo débilmente supervisado

Casos de uso

Recuperación de pasajes en preguntas abiertas
Recuperación de información ad-hoc
Similitud semántica
Recuperación de paráfrasis
Clasificación de sondeo lineal
Agrupamiento (clustering)

Recibe las últimas noticias y actualizaciones sobre el mundo de IA directamente en tu bandeja de entrada.