optimum/roberta-base-squad2
optimum
Pregunta y respuesta
Este modelo es una versión optimizada de deepset/roberta-base-squad2 para la tarea de Question Answering. Está basado en la arquitectura Roberta y ha sido entrenado con el dataset SQuAD 2.0 usando técnicas de aprendizaje profundo y ajuste fino.
Como usar
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/roberta-base-squad2"
# a) Obtener predicciones
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Cargar modelo y tokenizador
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.tokenization import Tokenizer
from farm.infer import Inferencer
model_name = "deepset/roberta-base-squad2"
# a) Obtener predicciones
nlp = Inferencer.load(model_name, task_type="question_answering")
QA_input = [{"questions": ["Why is model conversion important?"],
"text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True)
# b) Cargar modelo y tokenizador
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
tokenizer = Tokenizer.load(model_name)
from haystack import FARMReader, TransformersReader
# Para hacer QA a escala (es decir, muchos documentos en lugar de un solo párrafo)
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
# o
reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2")
Funcionalidades
- Respuesta a preguntas (Question Answering)
- Basado en la arquitectura Roberta
- Optimizado usando ONNX
- Compatibilidad con endpoints de inferencia
- Trained and evaluated in SQuAD 2.0 dataset
Casos de uso
- Respuesta a preguntas a partir de texto
- Automatización de chatbots para servicio al cliente
- Asistente virtual que responde a consultas específicas basadas en documentos