slovakbert-skquad-mnlr

TUKE-DeutscheTelekom
Similitud de oraciones

Este es un modelo de sentence-transformers: Mapea oraciones y párrafos a un espacio vectorial denso de 768 dimensiones y puede ser utilizado para tareas como la agrupación o la búsqueda semántica.

Como usar

Uso (sentence-transformers)

Usar este modelo se vuelve fácil cuando tienes sentence-transformers instalado:

pip install -U sentence-transformers

Entonces puedes usar el modelo de la siguiente manera:

from sentence_transformers import SentenceTransformer
sentences = ["Esta es una oración de ejemplo", "Cada oración es convertida"]

model = SentenceTransformer('slovakbert-skquad-mnlr')
embeddings = model.encode(sentences)
print(embeddings)

Uso (HuggingFace Transformers)

Sin sentence-transformers, puedes usar el modelo de la siguiente manera: Primero, pasas tu entrada a través del modelo transformer, luego debes aplicar la operación de agrupación correcta sobre los embeddings de palabras contextualizados.

from transformers import AutoTokenizer, AutoModel
import torch

# Agrupación Media - Toma en cuenta la máscara de atención para un promedio correcto
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] # El primer elemento del model_output contiene todos los embeddings de tokens
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

# Oraciones para las que queremos embeddings de oración
sentences = ['Esta es una oración de ejemplo', 'Cada oración es convertida']

# Cargar el modelo desde HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('slovakbert-skquad-mnlr')
model = AutoModel.from_pretrained('slovakbert-skquad-mnlr')

# Tokenizar oraciones
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Calcular los embeddings de tokens
with torch.no_grad():
    model_output = model(**encoded_input)

# Realizar agrupación. En este caso, agrupación media.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Embeddings de oración:")
print(sentence_embeddings)

Funcionalidades

Transformadores de oraciones
Mapeo de oraciones y párrafos a un espacio vectorial denso de 768 dimensiones
Apto para tareas como agrupación o búsqueda semántica

Casos de uso

Agrupación de oraciones
Búsqueda semántica

Recibe las últimas noticias y actualizaciones sobre el mundo de IA directamente en tu bandeja de entrada.